Women's Health

Pediatric Gastric Cancer Treatment (PDQ®): Treatment - Health Professional Information [NCI]

This information is produced and provided by the National Cancer Institute (NCI). The information in this topic may have changed since it was written. For the most current information, contact the National Cancer Institute via the Internet web site at http://cancer.gov or call 1-800-4-CANCER.

General Information About Pediatric Gastric Cancer

Primary gastric tumors in children are rare, and carcinoma of the stomach is even more unusual.[1] In one series, gastric cancer in children younger than 18 years accounted for 0.11% of all gastric cancer cases seen over an 18-year period.[2] In another study that used data from the National Cancer Database, patients younger than 21 years with gastric carcinoma were compared with patients older than 21 years.[3] Of the 129,024 cases identified, only 129 cases (0.1%) occurred in pediatric patients. While pediatric patients presented with more-advanced disease, overall survival for the two groups was similar. A retrospective analysis queried data from the Cerner Health Facts Database. The analysis identified 333 patients with gastric cancer (non-gastrointestinal stromal tumors, nonhematologic) from a base population of 9.6 million children.[4] The male-to-female ratio was 1.15 to 1. The mean age at diagnosis was 11.8 years. Gastric cancer was most prevalent in non-Hispanic White people and less common in Asian and Black people. Symptoms included abdominal pain, vomiting, anemia, diarrhea, and weight loss. Reflux symptoms with or without esophagitis, gastritis (including Helicobacter pylori gastritis), and duodenitis were reported in 10.2% of patients. Obesity, obesity-related comorbidities, tobacco use, and family history of colonic polyps, gastrointestinal cancer, and breast cancer were all more prevalent in this cohort of patients (P < .0001).

Prognosis depends on the extent of the disease at the time of diagnosis and the success of treatment that is appropriate for the clinical situation.[2]

Rare cases of familial diffuse gastric cancer associated with CDH1 germline pathogenic variants have been reported in adolescents.[5]

H. pylori infections may increase the risk of gastric cancer.[2,6] A Chinese study identified 1,015 pediatric patients with H. pylori infections who had endoscopic and histological data available to analyze.[7] The incidence rate of gastric mucosal precancerous lesions in children with H. pylori infections was 4.33% (37 of 854). There were 17 cases of atrophic gastritis, 11 cases of intestinal metaplasia, and 9 cases of dysplasia. For patients without H. pylori, there was only one case of atrophic gastritis (0.62%; 1 of 161 patients; P < .05).

References:

  1. Curtis JL, Burns RC, Wang L, et al.: Primary gastric tumors of infancy and childhood: 54-year experience at a single institution. J Pediatr Surg 43 (8): 1487-93, 2008.
  2. Subbiah V, Varadhachary G, Herzog CE, et al.: Gastric adenocarcinoma in children and adolescents. Pediatr Blood Cancer 57 (3): 524-7, 2011.
  3. Tessler RA, Dellinger M, Richards MK, et al.: Pediatric gastric adenocarcinoma: A National Cancer Data Base review. J Pediatr Surg 54 (5): 1029-1034, 2019.
  4. Attard TM, Omar U, Glynn EF, et al.: Gastric cancer in the pediatric population, a multicenter cross-sectional analysis of presentation and coexisting comorbidities. J Cancer Res Clin Oncol 149 (3): 1261-1272, 2023.
  5. Guilford P, Hopkins J, Harraway J, et al.: E-cadherin germline mutations in familial gastric cancer. Nature 392 (6674): 402-5, 1998.
  6. Saf C, Gulcan EM, Ozkan F, et al.: Assessment of p21, p53 expression, and Ki-67 proliferative activities in the gastric mucosa of children with Helicobacter pylori gastritis. Eur J Gastroenterol Hepatol 27 (2): 155-61, 2015.
  7. Yu M, Ma J, Song XX, et al.: Gastric mucosal precancerous lesions in Helicobacter pylori-infected pediatric patients in central China: A single-center, retrospective investigation. World J Gastroenterol 28 (28): 3682-3694, 2022.

Clinical Presentation and Diagnostic Evaluation

Gastric tumors must be distinguished from other conditions such as non-Hodgkin lymphoma, malignant carcinoid, leiomyosarcoma, and various benign conditions or tumors of the stomach.[1] Symptoms of carcinoma of the stomach include the following:

  • Vague upper abdominal pain, which can be associated with poor appetite and weight loss.
  • Nausea and vomiting.
  • Change in bowel habits.
  • Poor appetite.
  • Weakness.
  • Anemia. Many individuals become anemic but otherwise show no symptoms before the development of metastatic spread.

Fiberoptic endoscopy can be used to visualize the tumor or to take a biopsy sample to confirm the diagnosis. Confirmation can also involve imaging of the upper gastrointestinal tract.

References:

  1. Curtis JL, Burns RC, Wang L, et al.: Primary gastric tumors of infancy and childhood: 54-year experience at a single institution. J Pediatr Surg 43 (8): 1487-93, 2008.

Special Considerations for the Treatment of Children With Cancer

Cancer in children and adolescents is rare, although the overall incidence has been slowly increasing since 1975.[1] Children and adolescents with cancer should be referred to medical centers that have a multidisciplinary team of cancer specialists with experience treating the cancers that occur during childhood and adolescence. This multidisciplinary team approach incorporates the skills of the following pediatric specialists and others to ensure that children receive treatment, supportive care, and rehabilitation that will achieve optimal survival and quality of life:

  • Primary care physicians.
  • Pediatric surgeons.
  • Pathologists.
  • Pediatric radiation oncologists.
  • Pediatric medical oncologists and hematologists.
  • Ophthalmologists.
  • Rehabilitation specialists.
  • Pediatric oncology nurses.
  • Social workers.
  • Child-life professionals.
  • Psychologists.
  • Nutritionists.

For specific information about supportive care for children and adolescents with cancer, see the summaries on Supportive and Palliative Care.

The American Academy of Pediatrics has outlined guidelines for pediatric cancer centers and their role in the treatment of children and adolescents with cancer.[2] At these centers, clinical trials are available for most types of cancer that occur in children and adolescents, and the opportunity to participate is offered to most patients and their families. Clinical trials for children and adolescents diagnosed with cancer are generally designed to compare potentially better therapy with current standard therapy. Other types of clinical trials test novel therapies when there is no standard therapy for a cancer diagnosis. Most of the progress in identifying curative therapies for childhood cancers has been achieved through clinical trials. Information about ongoing clinical trials is available from the NCI website.

Dramatic improvements in survival have been achieved for children and adolescents with cancer. Between 1975 and 2020, childhood cancer mortality decreased by more than 50%.[3,4,5] Childhood and adolescent cancer survivors require close monitoring because side effects of cancer therapy may persist or develop months or years after treatment. For information about the incidence, type, and monitoring of late effects in childhood and adolescent cancer survivors, see Late Effects of Treatment for Childhood Cancer.

Childhood cancer is a rare disease, with about 15,000 cases diagnosed annually in the United States in individuals younger than 20 years.[6] The U.S. Rare Diseases Act of 2002 defines a rare disease as one that affects populations smaller than 200,000 people in the United States. Therefore, all pediatric cancers are considered rare.

The designation of a rare tumor is not uniform among pediatric and adult groups. In adults, rare cancers are defined as those with an annual incidence of fewer than six cases per 100,000 people. They account for up to 24% of all cancers diagnosed in the European Union and about 20% of all cancers diagnosed in the United States.[7,8] In children and adolescents, the designation of a rare tumor is not uniform among international groups, as follows:

  • A consensus effort between the European Union Joint Action on Rare Cancers and the European Cooperative Study Group for Rare Pediatric Cancers estimated that 11% of all cancers in patients younger than 20 years could be categorized as very rare. This consensus group defined very rare cancers as those with annual incidences of fewer than two cases per 1 million people. However, three additional histologies (thyroid carcinoma, melanoma, and testicular cancer) with incidences of more than two cases per 1 million people were also included in the very rare group due to a lack of knowledge and expertise in the management of these tumors.[9]
  • The Children's Oncology Group defines rare pediatric cancers as those listed in the International Classification of Childhood Cancer subgroup XI, which includes thyroid cancers, melanomas and nonmelanoma skin cancers, and multiple types of carcinomas (e.g., adrenocortical carcinomas, nasopharyngeal carcinomas, and most adult-type carcinomas such as breast cancers and colorectal cancers).[10] These diagnoses account for about 5% of the cancers diagnosed in children aged 0 to 14 years and about 27% of the cancers diagnosed in adolescents aged 15 to 19 years.[4]

    Most cancers in subgroup XI are either melanomas or thyroid cancers, with other cancer types accounting for only 2% of the cancers diagnosed in children aged 0 to 14 years and 9.3% of the cancers diagnosed in adolescents aged 15 to 19 years.

These rare cancers are extremely challenging to study because of the relatively few patients with any individual diagnosis, the predominance of rare cancers in the adolescent population, and the low number of clinical trials for adolescents with rare cancers.

Information about these tumors may also be found in sources relevant to adults with cancer, such as Gastric Cancer Treatment.

References:

  1. Smith MA, Seibel NL, Altekruse SF, et al.: Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 28 (15): 2625-34, 2010.
  2. American Academy of Pediatrics: Standards for pediatric cancer centers. Pediatrics 134 (2): 410-4, 2014. Also available online. Last accessed August 23, 2024.
  3. Smith MA, Altekruse SF, Adamson PC, et al.: Declining childhood and adolescent cancer mortality. Cancer 120 (16): 2497-506, 2014.
  4. National Cancer Institute: NCCR*Explorer: An interactive website for NCCR cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed August 23, 2024.
  5. Surveillance Research Program, National Cancer Institute: SEER*Explorer: An interactive website for SEER cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed March 6, 2024.
  6. Ward E, DeSantis C, Robbins A, et al.: Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64 (2): 83-103, 2014 Mar-Apr.
  7. Gatta G, Capocaccia R, Botta L, et al.: Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet-a population-based study. Lancet Oncol 18 (8): 1022-1039, 2017.
  8. DeSantis CE, Kramer JL, Jemal A: The burden of rare cancers in the United States. CA Cancer J Clin 67 (4): 261-272, 2017.
  9. Ferrari A, Brecht IB, Gatta G, et al.: Defining and listing very rare cancers of paediatric age: consensus of the Joint Action on Rare Cancers in cooperation with the European Cooperative Study Group for Pediatric Rare Tumors. Eur J Cancer 110: 120-126, 2019.
  10. Pappo AS, Krailo M, Chen Z, et al.: Infrequent tumor initiative of the Children's Oncology Group: initial lessons learned and their impact on future plans. J Clin Oncol 28 (33): 5011-6, 2010.

Treatment of Pediatric Gastric Cancer

Treatment options for pediatric gastric carcinoma include the following:

  1. Surgery.
  2. Radiation therapy and chemotherapy.

Treatment includes surgical excision with wide margins. For individuals who cannot have a complete surgical resection, radiation therapy may be used along with chemotherapeutic agents such as fluorouracil and irinotecan.[1] Other agents that may be of value are the nitrosoureas with or without cisplatin, etoposide, doxorubicin, or mitomycin C.

For information about the treatment of gastric cancer in adults, see Gastric Cancer Treatment. For information about the treatment of GIST in children, see Childhood Gastrointestinal Stromal Tumors (GIST) Treatment.

References:

  1. Ajani JA: Current status of therapy for advanced gastric carcinoma. Oncology (Huntingt) 12 (8 Suppl 6): 99-102, 1998.

Treatment Options Under Clinical Evaluation for Pediatric Gastric Cancer

Information about National Cancer Institute (NCI)–supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.

Latest Updates to This Summary (08 / 27 / 2024)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

This summary was comprehensively reviewed.

This summary is written and maintained by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of pediatric gastric cancer. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Pediatric Gastric Cancer Treatment are:

  • Denise Adams, MD (Children's Hospital Boston)
  • Karen J. Marcus, MD, FACR (Dana-Farber Cancer Institute/Boston Children's Hospital)
  • William H. Meyer, MD
  • Paul A. Meyers, MD (Memorial Sloan-Kettering Cancer Center)
  • Thomas A. Olson, MD (Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta - Egleston Campus)
  • Alberto S. Pappo, MD (St. Jude Children's Research Hospital)
  • Arthur Kim Ritchey, MD (Children's Hospital of Pittsburgh of UPMC)
  • Carlos Rodriguez-Galindo, MD (St. Jude Children's Research Hospital)
  • Stephen J. Shochat, MD (St. Jude Children's Research Hospital)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."

The preferred citation for this PDQ summary is:

PDQ® Pediatric Treatment Editorial Board. PDQ Pediatric Gastric Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/stomach/hp/pediatric-gastric-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 31661203]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

Based on the strength of the available evidence, treatment options may be described as either "standard" or "under clinical evaluation." These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website's Email Us.

Last Revised: 2024-08-27